

CINRG Systems Inc.

Is NIST SRM2806b Responsible for the Sudden Increase in Particle Counts you have Seen on your Oil Analysis Reports? A. Geach, B. Quesnel

<u>c(i)n r g</u>

Don't just automate, innovate.

CINRG Systems Inc. offers a range of flexible laboratory solutions. Our latest product offerings are a fully automated autodiluting particle counter and a robotic Houillon viscometer automation system that was developed in partnership with WearCheck International.

The Authors

Alistair Geach, Operations Manager

Alistair has been in the oil analysis industry for 20 years, formerly with SetPoint Technologies in Africa. Alistair's unique skills in chemistry, physics and engineering have helped him in his career of laboratory automation and instrument development.

STLE OMA I Certified **ILMA** MLA I, MLT I, LLA 1 Certified

Bill Quesnel, President

Bill Quesnel has been in the oil analysis industry for 24 years. Bill is president and former laboratory manager for WearCheck in Toronto, Ontario and graduated from the University of Waterloo in pre-med with minors in Biology, Chemistry and Computer Science.

STLE OMA I, OMA II Certified **ILMA** MLA I/II/III, MLT I/II, LLA 1 Certified

© Copyrights 2016. All rights reserved.

What is the issue?

- Same Oil Sample
- Results are different because they are based on two different ISO Particle Count calibrations
- SRM2806a vs.
 SRM2806b

\$0.00

+ Oil Filter \$700.00 x 133 = \$93,100.00 Ref: G. Tapp - GE Wind

Particle Count (PC)

ISO 4406:1999 (ISO 11171)

Particle count measurements are taken on typically 10 mL of oil with the results averaged to 1 mL. Prior to counting, the particles in the oil sample must be homogenized which can be accomplished in a combination of ways including shaking, sonication, de-gassing, etc. Most important is that sample preparation be carried out consistently. Once prepared the sample is loaded into a syringe and the contents of the oil are driven through the laser sensor at a controlled flow rate. The sensor "counts" the number of particles at the different size ranges for the duration of the test.

Verify effectiveness of filtrationDetect process contamination

Example

Breather filters and improved oil filtration have brought the cleanliness of this system down from 20/18/16 to 18/15/13 (sample is from a large hydraulic reservoir using Esso Nuto H 68).

Test	Target	Current	3 months ago	6 months ago
>4µm	5,000	1,865	3,465	8,432
>6µm	1,300	254	868	2217
>14µm	160	46	187	402
ISO 4406	19/17/14	18/15/13	19/17/15	20/18/16

© Copyrights 2016. All rights reserved.

ISO Code

ISO 4406 Cleanliness Code

Up to

More than

NIST2806b Particle Count Increase

How is Oil Cleanliness Measured?

The ISO Cleanliness Code is an industry accepted method of evaluating the cleanliness of a lubricated component. When the ISO Code indicates an increase by more than one ISO code steps need to be taken to investigate the cause.

Ref: WearCheck

APC Calibration Fluid History

Material	ISO Standard	Certificate Date	Reason for Revision	Expiration Date
ACFTD	4402:1991	1960 – 1999	AC Fine Test Dust (ACFTD) no longer commercially available	
ISO MTD SRM2806-0	11171:1999	10-Dec-97	ISO Medium Test Dust (MTD) - NIST Traceable Standard - Original Certificate	
ISO MTD SRM2806-1	11171:1999	1-Mar-99	Revised uncertainties and change of >30µm values to information values	
ISO MTD SRM2806-2	11171:1999	9-Aug-00	Revision of expiration date.	
ISO MTD SRM2806-3	11171:1999	16-Nov-04	Decrease in expiration date due to instability.	17-Sep-04
ISO MTD SRM2806a-0	11171:1999	13-Oct-04	Original Certificate	
ISO MTD SRM2806a-1	11171:1999	29-Jan-07	Update of expiration date and editorial changes.	
ISO MTD SRM2806a-2	11171:1999	16-Dec-08	Extension of certification period.	
ISO MTD SRM2806a-3	11171:2010	30-May-13	Extension of certification period; editorial changes.	31-Dec-14
ISO MTD SRM2806b-0	11171:2016?	12-Jun-14	Original Certificate	31-Dec-20

EDNRG

CS-APC-2 Automated Auto-Diluting Particle Counter

Laser Sensor Klotz LDS 45/50

Multi-channel Sensor (4096 channels)

1998 - Effect of ISO MTD replacing ACFTD

SIZE	LOT 36	LOT 10B	CHANGE
> 4µm	7295	7734	6.0%
> 6µm	2906	3161	8.8%
> 14µm	210	217	3.7%
	Ave	6.2%	

- Raw counts from SRM2806a & b "remarkably" similar
- Derived dust concentration 25% higher than SRM2806 (2.8 mg/L -> 3.5 mg/L)
- Only 6% higher than RM2806a Lot 36 (3.3 mg/L -> 3.5 mg/L)

Differential Counts vs. Channel Number -

Determine the concentration of 2806 Lot 10B

Size µm(c)	Mean Particle Concentratior (>Particles/mL) 2806 Lot 36 2806 Lot 10B					
>4	7300.5	10665.2				
>5	4385.6	6615.8				
>6	2907.9	4432.9				
>7	1939.9	3065.7				
>8	1273.8	2146.0				
>9	851.2	1523.5				
>10	599.8	1096.1				
>11	445.7	796.1				
>12	361.6	594.0				
>13	304.3	461.5				
>14	209.8	362.1				
Conc.	3.3mg/L	?				

Calibrate APC with 2806 Lot 36 Then run 2806 Lot 10B

SIZE	LOT 36	LOT 10B	CHANGE
> 4µm	7294.8	7734.1	6.0%
> 6µm	2905.9	3160.7	8.8%
> 14µm	209.6	217.4	3.7%
	6.2%		

Conc 2806 Lot 10B = 3.3 mg/L * 1.062 = 3.50 mg/L

Calibrate APC with 2806 Lot 10B Then run 2806 Lot 36

SIZE	LOT 10B	LOT 36	CHANGE
> 4µm	10713.2	10050.9	6.6%
> 6µm	4436.4	4184.4	6.0%
> 14µm	4.0%		
	5.5%		

Conc 2806 Lot 10B = 3.3 mg/L * 1.055 = 3.48 mg/L

Estimate of Certification "Error"

Relative contribution of increased test dust concentration and certification "error" to the increase in counts.

Particle Size	SRM2806a (3.3mg/l) SRM2806b (3.5mg/l) Overall C Certified Counts Certified Counts Increa		Overall Count Increase	Expected Counts 3.3mg/l x 1.062	Unexpected Increase	Change from "Certification Error"	
>4µm	7300.5	10864	49%	7753.1	3110.9	40%	
>6µm	2907.9	4210	45%	3088.2	1121.8	36%	
>14µm	209.8	389.3	86%	222.8	166.5	75%	

NOTE: The "error" is with SRM2806a not with SRM2806b

Determination of Channel / mV settings for 4µm

120 100 80 60 40 20 20	Calibrat	tion Fluid 2806	S Lot 36 (NIST S	RM2806b Trad	Beable).	Consol attice. County	12000.0 10000.0 8000.0 6000.0 4000.0 2000.0	Calibration Fl	uid 2806 Lot 1	OB (NIST SRM2	2806b Traceable)
-20	002 0 0.00	1000 1500	2000 2500	3000 3500	4000 4500		0.0	500 1000	1500 2000 2	500 3000 35	00 4000 4500
			Channel Numb	r	nV = <u>1</u>	10,000mV x Char	<u>nel #</u>		Channel nu	ımber	
	13716.2	1				4,096	14786.3	1			
		:						:			
	7495.7	164					11160.9	104			
	7461.6	165					11085.0	105			
	7427.0	166					11007.3	1.06			
	7392.5	67					10931.6	107			
	7360.2	168					10857.4	108			
	7327.3	169					10785.2	109			
7300.5	7294.8	170	4	415.0	mV	10665.2	10713.2	110	4	268.6	mV
	7262.7	171					10641.6	111			
	7230.9	172					10571.9	112			
	7199.1	173					10503.9	113			
	7167.7	174					10434.3	114			
	7136.0	175					10368.4	115			
		:						:			
	0.0	4096					0.0	4096			

© Copyrights 2016. All rights reserved.

How will smaller particles be affected (4, 6, 14, 21µm)?

Comparative Counts for

Sensor Calibrations traceable to SRM2806a and SRM2806b

Sample Number	2806 Cal	Count >4µm	Count >6µm	Count >14µm	Cleanliness Code	Component Sampled	Increase
2057337	а	447	156	15	16/14/11	Hydraulic System	
2037337	b	702	226	25	17/15/12		0-25%
2057341	а	321	121	12	16/14/11	Hydraulic System	
	b	496	170	20	16/15/12		>25%
2057382	а	384	114	12	16/14/11	Wind Turbine Gearbox	2370
	b	698	171	18	17/15/11		
2057613	а	618	179	19	16/15/11	Gas Turbine	>50%
	b	1085	277	32	17/15/12		
2057380	a	355	86	10	16/14/10	Wind Turbine Gearbox	>100%
	b	728	137	15	17/14/11		
2057353	а	312	138	12	16/14/11	Excavator Hydraulics	
	b	1250	230	20	17/15/11	,	
2057333	a	648	162	14	1//15/11	Hydraulic System	Increase
	D	1186	262	24	17/15/12		
2057384	a	080	187	16	17/15/11	Wind Turbine Gearbox	0150
	a	1252	294	2/	17/15/12		0100
2057437	d b	2606	225	0	10/16/11	Hydraulic System	1 150 1
	U C	1256	212 212		17/15/10		11501
2057390	a h	2475	218 //19	15	18/16/11	Wind Turbine Gearbox	4 100 0
	a	1548	456	53	18/16/13		1 150 2
2057335	h	2752	687	79	19/17/13	Hydraulic System	
	a	4803	375	14	19/16/11		2 ISO
2057135	b	14001	874	26	21/17/12	Steam Turbine Bearing	
	а	6336	1726	261	20/18/15		
2057129	b	10783	2734	357	21/19/16	Hydraulic System	
	а	14104	1255	46	21/17/13		
2057440	b	32024	3018	74	22/19/13	Excavator Hydraulics	

What is the solution?

- Draft revision to ISO1171
- *Ability to report to SRM2806a: 4µm(c), 6µm(c), 14µm(c) using 4.45µm(b), 6.68µm(b), 15.6µm(b)
- Ability to report to SRM2806b: 4µm(b), 6µm(b), 14µm(b)

NOTE: Relationship determined using round robin results from 15 laboratories using secondary samples from 7 different sources in 4 countries.

- FDIS ballot of 11171 will be out soon.
- ISO TC131/SC6 will meet to vote in next few months.

Comparative Counts for

Sensor Calibrations traceable to SRM2806a and using FDIS11171(c)

	Sample Number	2806 Cal	Count >4µm	Count >6µm	Count >14µm	Cleanliness Code	Component Sampled	Increase
	2057337	а	447	156	15	16/14/11	Hydraulic System	
	2037337	С	503	175	17	16/15/11		0-25%
2057341	2057341	а	321	121	12	16/14/11	Hydraulic System	
	2037341	С	361	135	14	16/14/11	Tyuradile Oystern	>25%
	2057382	а	384	114	12	16/14/11	Wind Turbine Gearbox	~ 2370
		С	445	128	14	16/14/11		> E 00/
	2057613	а	618	179	19	16/15/11	Gas Turbine	>50%
		С	719	205	22	17/15/12		
	2057380	а	355	86	10	16/14/10	Wind Turbine Gearbox	>100%
		С	428	98	12	16/14/11		
2057353	а	312	138	12	16/14/11	Excavator Hydraulics		
L		С	737	163	14	17/15/11		
2057333	2057333	а	648	162	14	17/15/11	Hydraulic System	Increase
L		С	763	187	17	17/15/11		
	2057384	а	686	187	16	17/15/11	Wind Turbine Gearbox	0150
ŀ		С	805	214	19	1//15/11		0150
	2057437	а	1198	166	8	17/15/10	Hydraulic System	1 100 1
		С	1567	200	9	18/15/10	, ,	1 120 1
	2057390	а	1256	218	9	1//15/10	Wind Turbine Gearbox	
		C	1518	266	10	18/15/10		1 ISO 2
	2057335	a	1548	456	53	18/16/13	Hydraulic System	
		C	1802	275	14	18/10/13		2 150
	2057135	d	4803	3/5	14	19/16/11	Steam Turbine Bearing	2150
			6226	401	261	20/10/11		
	2057129	a	7220	1021	201	20/10/15	Hydraulic System	
			1/10/	1255	290	20/10/13		
	2057440	a	17007	1620	52	21/17/13	Excavator Hydraulics	
1		L	1/33/	1025	55	21/10/13		

What is the issue?

- Same Oil Sample
- Results are only slightly different because of revisions to ISO 11171
- SRM2806b using size modification to report as 4µm(c),6µm(c),14µm(c)

\$0.00

\$0.00

Will larger particle sizes be affected (38 & 71µm)?

- Larger particles calibrated using PSL fluid.
- Unaffected by MTD based calibration fluid.
- No change for large particles.

Summary

- 1998 Discontinuation of ACFTD leads to change in calibration method ISO 4402 -> ISO 11171
- Due to change in accuracy of certification standards particle sizes are redefined: 2/5/15 -> 4/6/14
- 2016 New ISO MTD SRM2806b, no availability of SRM2806a may lead to a new ISO11171:2016 revision
- Due to further improvement in accuracy we may see particle sizes redefined again (*but only for calibration purposes*).
- Ability to report to either standard; 4µm(c), 6µm(c) 14µm(c) or 4µm(b), 6µm(b) 14µm(b)
- No change to larger particle calibration. Still using PSL fluid.
- If you want to get involved contact your national representative to ISO TC131/SC6. Advise them of your concerns and support the FDIS.

CINRG Systems Inc. Innovation in Automation For Commercial Oil Analysis Laboratories